Name:

SM3 4.4 Log Properties

We can manipulate log expressions, in order to simplify them or make equations that contain them easier to solve. The first rule, $\log_b xy = \log_b x + \log_b y$ is proven below:

$$b^f = x \rightarrow f = \log_b x$$

 $b^g = y \rightarrow g = \log_b y$

We arbitrarily picked f and g to be the number of times b needed to be multiplied to be x and y.

$$xy = b^f b^g$$

$$xy = b^{f+g}$$

$$\log_b xy = \log_b b^{f+g}$$

$$\log_b xy = f + g$$

$$\log_b xy = \log_b x + \log_b y$$

Multiplication
Exponential Rule \log_b both sides
Evaluate \log_b on right side
Substitution for f and g

The proof of the second rule, $\log_b \frac{x}{y} = \log_b x - \log_b y$, is like the first rule but with a negative value for g.

The proof of the third rule, $\log_b x^p = p \log_b x$, is like the first but with several copies of f being used.

The conversion of base rule, $\log_b x = \frac{\log x}{\log b}$, allows you to move from \log_b to any \log that you like. We used base 10 for convenience, since most calculators operate easily in base 10.

Example: Expand the following using logarithmic properties.

Expand the following using logarithmic properties.

$$\log_3 5x$$

$$\log_3 5 + \log_3 x$$

$$\log \sqrt[3]{x^2 + 3x + 2}$$

$$\frac{1}{3}\log(x^2 + 3x + 2)$$

$$\frac{1}{3}\log(x + 2)(x + 1)$$

$$\frac{1}{3}\log(x + 2) + \frac{1}{3}\log(x + 1)$$

Example: Rewrite the following in base 10.

$$log_6 7$$

$$\frac{\log 7}{\log 6}$$

HW4.4

Expand the following using logarithmic properties. Simplify if appropriate.

1. $\log[(2)(3)]$

2. $\log \frac{2}{3}$

3. $\log 2^3$

4. $\log_4 3^x$

 $5. \log 2x$

6. $\log_2 \frac{x}{2}$

7. $\log_5 x^3$

8. $\log_4[x(2-x)]$

9. $\log_3 \frac{5}{x+3}$

10. $\log_2(x+1)^4$ 11. $\log \sqrt{x}$

12. $\log \sqrt[3]{x+3}$

13. $\log_4[x(x-2)^4]$ 14. $\log_3[x(x+1)]^5$ 15. $\log_4\sqrt[4]{\frac{x+1}{x-1}}$

16. $\log_3 \frac{\sqrt{x}}{3+x^2}$

17. ln(2x)

18. $\ln \frac{x}{2}$

19. $\ln x^3$

20. $\ln[x(x-1)^4]$

21. $\ln[(x-2)(x+3)]^2$ 22. $\ln(x^2-16)$ 23. $\ln\frac{x^2+3x-4}{x^2-25}$

24. $\ln[3x^4(9-2x)]$

25.. $\ln \frac{x^2-4}{x+2}$

26. $\ln(x^4 + 3x^3 + 2x - 1)^2$

Rewrite the following within one logarithm.

 $27. \log_2 x + \log_2 y$

28. $3 \log x$

29. $\log_2 x - \log_2 y$

30. $\frac{1}{2}\log_3(x-3)$ 31. $2\log_5 x + \log_5(4+x)$ 32. $\log(x-2) - \log(x+2)$

33. $3\log_2(x^2) + 3\log_2(x+10)$

34. $\log x + \log(x - 2) + \log(x^3 + 3)$

35.
$$\log_4(x+3) + \log_4(x-3) - \log_4(x+7)$$

$$36.\frac{2}{3}\log_7 x - \frac{1}{3}\log_7(4-x)$$

37.
$$\ln x + \ln 2$$

38.
$$\ln x - \ln 2$$

40.
$$\ln(x + 1) + \ln 2$$

41.
$$3 \ln x + 2 \ln(x + 3)$$

41.
$$3 \ln x + 2 \ln(x+3)$$
 42. $\ln(x-5) + \ln(x+5)$ 43. $\frac{1}{2} \ln x - \ln(4-x)$

$$43. \frac{1}{2} \ln x - \ln(4 - x)$$

44.
$$\ln e^0 + e^{\ln x}$$

45.
$$\ln x + \ln y - \ln z$$

46.
$$3[\ln(x-2) + \ln(3+x)]$$

Rewrite the following in base 10.

49.
$$\log_3 x^2$$

50.
$$\log_3(x-2)$$

51.
$$\log_7(x+5)$$

52.
$$\log_3 \sqrt[3]{x-4}$$

54.
$$\log_4(x + 7)$$

Rewrite the following logarithms as Natural Logarithms.

57.
$$\log_4 x^3$$

58.
$$\log_7(x + 10)$$

59.
$$\log_3(x-5)$$

60.
$$\log_3 \sqrt[4]{2x-4}$$
 61. $\log_2 3x$

61.
$$\log_2 3x$$

$$62.\log_5(3x+7y)$$